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Contaminant dispersion as viewed from a fixed 
position 
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Department of Applied Mathematics and Theoretical Physics, University of Cambridge, 

Silver Street, Cambridge CB3 9EW 

(Received 17 February 1984 and in revised form 3 October 1984) 

A Hermite series expansion is used to describe the time evolution of the contaminant 
concentration at a fixed location in a flow. Exact expressions are derived for the 
dosage, centroid and temporal variance. A two-mode approximation is proposed 
which gives accurate results at moderate to large distances downstream of the 
discharge. 

1. Introduction 
By tradition, and for analytic tractability, theoretical studies of contaminant 

dispersion generally concern the spatial distribution of concentration. For similarly 
compelling reasons, such as limitations upon the available number of measuring 
stations, experimental studies usually lead to data for the temporal distribution of 
concentration. Therefore approximations, of a variety of levels of sophistication 
(Chatwin 1971), have had to be made when comparing (spatial) analytical predictions 
with (temporal) experimental results. 

An important theoretical development was made by Tsai & Holley (1978) when 
they showed that it was possible to calculate numerically the temporal moments of 
the concentration at  a fixed location. Chatwin (1980) demonstrated how such 
information of the first few moments can be used to construct accurate Hermite series 
approximations to the temporal distribution. 

The starting point for the present paper is a modification of the method of Tsai 
& Holley (1978) so that direct predictions are made for the temporal contaminant 
distribution in the manner advocated by Chatwin (1980). Then, rather than obtaining 
numerical solutions, exact expressions are derived for the dosage, centroid and 
temporal variance. Alas, these expressions are no less complicated than the corres- 
ponding spatial results (Aris 1956; Chatwin 1970; Smith 1982~) .  Guided by the form 
of the exact solutions, a simple yet accurate approximation is proposed. 

2. Hermite series representation 
Shear dispersion, as contrasted to the direct effects of longitudinal diffusion, is of 

importance only in high Peclet number (laminar or turbulent) flows. Thus, following 
the practice established by G. I. Taylor (1953), we shall neglect the effect of 
longitudinal diffusion. We shall also make the simplifying assumption that the flow 
is longitudinally uniform (independent of 2). Hence, the advection-diffusion equation 
for the contaminant concentration c (x ,  y, z, t )  takes the form 

a,c+ua,c = v q K - v C ) ,  (2.1 a) 
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n*K.Vc = 0 on aA, (2.lb) 

and uc = p(y, z )  8(t) at x = 0. (2.lc) 

Here u ( y ,  z )  is the longitudinal velocity, ~ ( y ,  z )  the transverse diffusivity tensor, V the 
transverse gradient operator (0, a,, az), aA the impermeable boundary, n the outward 
normal, and p(y, z )  the discharge profile. 

Guided by the work of Chatwin (1970, 1980) and of Smith (1982a), we represent 
c(z, y, z ,  t )  by a temporal Hermite series expansion: 

(2 .24  

with [ = {t-T)/u. (2.2b) 

Here T ( x ,  y, z )  is the temporal centroid, and u 2 ( x ,  y, z )  the temporal variance of the 
contaminant cloud, as observed a t  the location (2, y, z) .  The Hermite polynomials Hem 
are defined recursively : 

He, = 1,  He, = [, He,,, = [ He,,, - (m+ 1 )  He, for m 2 0. (2.3) 

The rate of convergence of ( 2 . 2 ~ )  depends upon how close to Gaussian is the temporal 
concentration distribution at  a fixed position (2, y, z ) .  The work of Chatwin (1970, 
1980) suggests that this becomes better as z increases. Thus the present work can 
be regarded as being most pertinent a t  moderate or large distances downstream of 
a discharge. 

In effect the representation ( 2 . 2 ~ )  factors out the t-dependence. The functions do), 
T ,  u2, ... are functions of position (x, y, z).  The equations that they satisfy can be 
derived by our taking the He, component of the advection-diffusion equation (2.1 a ) :  

u a , a ( m ) - v q K ~ v a ( m )  ) 

-&n-i) - -u(m-i)Ua ~ + ~ ; v T v ~ ( m - l )  + ~ . ( ~ - ~ ( m - i )  V T )  

+ $K: V u 2  V U ( ~ - ~ )  + V *  ( K * U ( ~ - ~ )  V u 2 )  - a(,-% a, u2 + ~ U ( ~ - ~ ) K :  (VT)2}  

+ U ( ~ - ~ ) K : V T V U ~  +$(m-4)~:  (Vu2)', ( 2 . 4 ~ )  

3. Advection-diffusion eigenmodes 
For m = 0 the equations (2.4a-c) take the form 

u a , a ( o ) - v q K . v a ( o ) )  = 0, ( 3 . 1 ~ )  

and do) = q/u at x = 0. (3.1 c) 

Close to the discharge position we have the Taylor series approximation 
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To obtain the full solution ofequations (3.1 a-c) we introduce the advection-diffusion 

( 3 . 3 4  

with n-x*V$,  = 0 on aA. (3.3b) 

and *=u, qdrn$,,=~ f o r m + n ,  (3.3c, d) 

(Tsai & Holley, 1978; Smith 1982b), where the over-bars denote the cross-sectional 
average values, The normalization ( 3 . 3 ~ )  ensures that the lowest mode is 

eigenmodes $n(y ,  z )  : 
V .  (K'V$n) +pu, ~ $ u ,  = 0, 

$o = 1 with po = 0. (3.4) 

In terms of the eigenmodes the starting value can be represented 

(e.g. multiply both sides by $rn and integrate, making use of the identities (3.3c, d)). 
This leads to the solution 

(Tsai & Holley 1978, equation 14). Thus the zero temporal moment becomes uniform 
across the flow on a length scale of order l/pl downstream of the discharge. (For 
non-conserved contaminants the lowest mode +o is not uniform, and the asymptote 
is to the modal shape do). If the discharge has the same shape as the velocity profile 
(i.e. q$,, a u $ ~  #n = 0) then for conserved contaminants do) is uniform for all x. 
- -  

In view of the result 
00 

a(O)(x, y, 2) = J-, c(x, y, 2, t) dt, (3.7) 

we can interpret do) as being the total dosage at the location (2, y, z). The work of 
Smith (1982b) can be interpreted as concerning the dosage experienced at the 
shoreline of a shallow river. The optimal site for a point discharge is at the zero 
crossing of the first advection-diffusion eigenmode $l. For this unique discharge site 
the dosage do) at either river bank never exceeds the asymptotic value q / U ,  i.e. is 
just as good as the more expensive strategy of matching the discharge to the volume 
flow rate (K = 0). 

4. Temporal centroid 

equations for the centroid T(x, y, z )  : 
Form = 1 the absence of u(l) in the representation ( 2 . 2 ~ )  means that (2.4a-c) yield 

u az.aw) - v ( K - v ( a w ) )  = u(o) ,  ( 4 . 1 ~ )  

with n.rV(a(O)T) = 0 on aA, (4.1 6) 

and T = O  a t x = O .  ( 4 . 1 ~ )  

Close to the discharge we obtain the intuitively obvious result that the time-of-arrival 
varies inversely as the local flow velocity 

T = X/U + O(x2). (4.2) 
8 FLM 152 
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representations : 
To solve (4.la-c) in terms of the eigenmodes $,(y,z), we note the series 

u -  a- 
#m=:[+rn+ n-1 +m$n+n]* 

Thus, we can formally represent the right-hand side term in equation (4.1 a) : 

(4.3a) 

(4.3b) 

-~ u w  
+- u'! n-1 x $n [K q+ m-1 z q#m #m+nexp(-PmX)]* (4.4) 

Solving equations (4.1 a+) for each eigenmode separately we derive the composite 
solution 

m-1 Pm n-1 

The pointwise convergence of the series (3.5,4.3a7 b) is not rapid, with the consequence 
that for small x neither is (3.6, 4.5). As x increases the exponential and 1/pn factors 
greatly accelerate the convergence of the series for do) and T. 

From this full solution (4.5) we can re-derive the asymptotic results obtained by 
Smith (1984, $4). First we note that for large x we have 

where 

( 4 . 6 ~ )  

(4.6b) 

Thus, the contaminant cloud eventually moves at the ,ulk vesxity U, with a shift 
of time G(y, z )  between streamlines. There is an additional forwards or backwards time 
displacement if the discharge or monitoring position is in a part of the flow where 
G(y, z )  is positive or negative respectively. Next, making use of the equations (3.3a-c, 
4 . 3 ~ )  satisfied by the eigenmodes #n(y ,  z ) ,  we can confirm that the summation (4.6b) 
is a solution of the transverse diffusion equation 

V.(K*VG) = - 1-= , (4.7a) 

with n.K*VG = 0 on CIA, (4.7b) 

and UG = 0 (4.7c) 

( U,) 
- 

(Smith 1984, equations (4.3a-c)). 
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For later use we note the results 

( 4 . 8 ~ )  

(4.8b) 

Inevitably, there are many close similarities to the long-established spatial 
description of contaminant dispersion. For example, Aris (1956, equations 18, 23) 
gives the spatial counterparts of (3.6, 4.5). The differences arise in the definitions of 
the respective eigenmodes. At large times there is a shift g(y,z) of the spatial 
centre-of-gravity between streamlines (Aris 1956, equation 24 ; Chatwin 1970, 
equation 1.9). Except for a l/E factor and the choice of normalization (4.7c), g(y, z )  
satisfies the same equations as the shift of time G(y, z).  As noted by Smith (1984, 
equation 11.3) the relationship can be written 

5. Variance 
For m = 2 (2.4a-c) can be re-written: 

with 

and 

Making use of (3.2, 4.2), we infer that u2 initially grows as x3 : 

U2 = $X3K: (VU)'/U5 -k o ( X * ) .  (5.2) 

Thus, strong shear or low velocities are associated with comparatively large dilution. 
Commonly, both these contributory factors are strongest close to boundaries. 

The quadratic dependence of (VT)2 upon q makes equation (5.1 a) awkward to solve 
directly. To avoid this difficulty we follow Smith (1982~)  and make the change of 
dependent variable : 

(5.3) a ( O ) q 2  = V-aa(O) 

The equation for V is 

uaz v - v * ( K * v v )  = 2 (5.4a) 
U 

with 

and 

n*K.VV = 0 on aA, 

V = O  a t x = O .  

(5.4b) 

(5.4c) 

If we represent the second moment V ( x ,  y, z )  by an eigen-function expansion 
m 

V =  Vo(x)+ I: V n ( x ) # n ( y , z ) ,  
n-1 

8-2 
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then we can replace equations (5.4a-c) by the sequence of first-order ordinary 
differential equations 

p=+n  

The solutions for the modal weight factors are 

- -- 

'A 'n2 [I - (pn x + I )  exp ( -pn x)] (& - 1)2 x2 exp ( -pn x) + 2 - - + 
u3 2P2, 
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-___- 
$m@n #p#m q$p e x ~ ( - ~ n x ) - e x P ( - ~ m x )  

Pm-Pn 

} .  (5.7b) 

We observe that for small x the coefficients V,, Vn grow as x2, as contrasted to the 
slower x3 growth of g2 (although in this limit the convergence of the series is 
exceedingly slow). 

Again, we can use this full solution (5.5; 5.7a, b) to re-derive the asymptotic results 
obtained by Smith (1984, 5555-7). For the #o weight factor we have (see 4.8a, b):  

~ X P  ( -/ln 2) - ~ X P  ( - ~ p  X) 

Pp-Pn 

I 2 +- x x 
ii? m + n  p + m  Pp-Pm 

p + n  

- 

(5.8a) 
2 

,iP U 
V, - - 2a (XB-ucz) += p, 

- where - 
a #n(y,Z) 4m- X - #m 4 n -  (5.8b) 4 n  a -  

GGC2)(y, 2) = x (&- 1) 5 $ n ( ~ 3  2 )  + Z ~ 

n-1 Pn n-1 Pn m + n P m  

The 1/pnpm factors make the convergence extremely rapid. From (4.83 we can 
confirm that, in agreement with (6.7u-c) of Smith (1984), the auxiliary function G(2) 
satisfies the transverse diffusion equation 

with ~ - K * V G ( ~ )  = 0 on aA, (5.9b) 

and uO'a,=o. (5.9c) 

Conveniently, the asymptotic form of the series for the higher coefficients involves 
the same auxiliary function : 

(5.10) a a 2 -  
Z vn(x) #n(yj 2 )  N 2 @"(y, 2) += qGG(y, 2 )  

U U n-1 

(Smith 1984, equation 7.2). We note that from (4.7, 5.9) it  can be shown that 

Z W  = ( U - U ) c a ,  ( 5 . 1 1 ~ )  

(5.11 b) (Z-U)  GG(2) = K(VC('))'. 

For the temporal variance g2 the resulting asymptotic expression is 

g 2  - 2xa U - 2uca U - + 2  ( 7 ) - ( 9 2 + 2 G ( 2 ) ( y ,  2)-G(y, z ) ~  (5.12) 
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(Smith 1984, equation 7.4). The linear growth rate with distance is related to the 
shear-dispersion coefficient (Smith 1984, equation 5.4) : 

ag2 2 
ax u’j 
- - -D(m) where D(m) = 2C.  (5.13) 

This is, of course, equivalent to  the spatial result derived first by G. I. Taylor (1953) 

D(m) = ug. (5.14) 

6. Two-mode approximation 
The exact solutions for the centroid and for the variance are formidably complicated. 

Indeed, Tsai & Holley (1978) advocate the use of numerical rather than analytical 
solutions for the temporal moments. Of course, for small and for large distances 
downstream of the discharge we have the respective asymptotic formulae (4.2, 5.2) 
and (4.6, 5.11). However, there is a need for some simple approximations applicable 
to intermediate distances. 

One limiting case in which the exact solutions are themselves simple is when there 
isonlyasmallnumberofmodes$,(y, z) ,  ..., $&, z)e.g. foraflowwith2or3well-mixed 
cells the modes describe the approach to  uniformity of concentration imbalances 
between the cells (Thacker 1976). I n  particular, if we are to  reproduce the large x 
asymptotes (4.6a, 5.8a, 5.10) then we need a minimum of two ortho-normal modes: 

( 6 . 1 ~ )  

(6.lb) 

(c.f. the definitions (4.6b, 5.8b) of G ,  G @ ) ) .  I n  effect we are seeking to replace the actual 
source and velocity profiles p(y, z )  and u ( y ,  z )  by analytically convenient forms which 
involve two optimally chosen non-uniform modes. 

It follows from equations (6.1 a, b) that  q51, $z can be expressed as linear combinations 
of G ,  G@).  For algebraic convenience we write these combinations: 

a j [ ( i i - u ) G G ( 2 ) i i G - i i F -  UG ]+ Pj[&G(2)-iiCPGI 
j = 1,2, (6.2) h = [ ( U - u )  GG(%G- [(U-u) GG(2)Ea- ( G F ) z ]  

where the coefficients a,, az, p,, pz remain to  be determined. Substituting back into 
equations (6.1 a,  b) and extracting the coefficients of G, UG@) we find that 

?!+E&Q, - OClP1 +- azPz = $F, R P  -+A= $ ( ~ ~ - U ) G G ( ~ ) .  (6.3a,b,c) 
ru1 ruz Pl  Pz ru1 Pz 

Also, from the expressions 

(6.4a, b )  

we can use the ortho-normality (3.3c, d) to infer the further three relationships 
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Solving for a?, a,/?,, p;” we find that 

[pz E r n - G W ] ,  a 2 P 2  = ~ [aZP-p, a w l ,  ( 6 . 6 ~ )  d )  alp1 = ~ 

P2-P1 Pz -P1 

The consistency condition a;& = (a,/3,)2 yields a quadratic equation for the decay 
exponents pl,  p, : 

p . ” [ D G F -  t(uCGT2))9] 

- P [ ~ ~ + u ( u - u ) C C ‘ 2 ’ u C z - 2 G ~  ucco] 
+[&(E-u)GG(~)-G(P)~] = 0. (6.7) 

Thus, to apply the two-mode approximation first we must solve equations (4.7, 
5 .9)  for the two auxiliary functions G(y, z )  and G(2)(y, z).  Next, we need to  evaluate 
the seven integrals 

(6 .8)  

Then we solve the quadratic equation (6.7) to obtain the spatial decay rates ,uul,pz. 
The values of the coefficients al, pl, a,, /Iz follow from ( 6 . 6 ~ - f ) ,  and the modal shapes 
$l(y, z ) ,  $z(y, z )  from (6 .2) .  A test of the approximations is given in $8 below. 

G) D, ZP, UCJao, (E-  u) G G ( 2 ) ,  u602, P. 

7. A shallow triangular channel 
The timescale for vertical mixing in a flow of depth h and of vertical diffusivity 

K,, is of order h 2 / ~ , , .  Similarly, in a flow of width B the timescale for transverse mixing 
is of order B 2 / ~ , ,  where K ~ ,  - 2 ~ , ,  (Fischer 1973, figures 2,  3) .  Thus, in a shallow 
channel with h 4 B the vertical and transverse mixing stages can be regarded as being 
quite distinct. In  particular, on the longer transverse mixing scale the contaminant 
concentration can be taken to be independent of the vertical coordinate z. 

Mathematically, this simplifying assumption permits us to integrate-out the 
z-structure. For example, the eigenmode equations ( 3 . 3 ~ 4 )  now become : 

( 7 . 1 ~ )  

and ( 7 . 1 ~ )  

j;: h 11 u 11 $n+,dy = 0 for m * n, ( 7 . l d )  

where I( K~~ 11 is the vertically-averaged transverse diffusivity and 11 u 11 is the 
vertically-averaged longitudinal velocity. 
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FIGURE 1.  Definition sketch of the triangular depth profile. 

If the local friction velocity u* is proportional to the local flow velocity 11 u 11, then 
Smith (1984, appendix B) has shown that the velocity and diffusivity distributions 
can be modelled : 

(7.2a, b) 

The empirical constant a has the value 0.15 in straight channel conditions (M'ischer 
1973). For curving channels the secondary circulation augments transverse mixing 
and the numerical coefficient can be as large as 0.8. We note that Yotsukura & Sayre 
(1976) favour a model in which 1) u 11 varies as hf, and in the absence of sufficient field 
data they take 11 K~~ 11 to be uniform. 

- 1  -B 11 u 11 = @h%/p 11 K~~ 11 = aii,hhP/hz. 

For a triangular channel (see figure 1 )  

h = Sh(y/B) (0 < y < B )  

with 

(7.3) 

(7.4a) 

(7.4b) 

(7.4c) 

and tan a, = - 3an/(a; - 3), (7.4d) 

where t ,  = B2/ah@, (7.4e) 

is a characteristic transverse mixing time (Fischer 1973). The first few roots for a, 
are 

a, = 5.763, a2 = 9.095, a, - (n+ l)n-3/(n+ 1)n. (7.5) 

Remembering to include the h weighting factor in the cross-sectional averages, we 

( 7 . 6 ~ )  

find that 

I' 9, = 4yn  {%- 2( 1 - cos a,) 

a n  a; 

4, 9, = {2a, cos a, sin a, + 2an sin a, cos a, - 2a, a, 
a m  a n  

-2 sina, sina,+(a~+a;)[Cin(a,+a,)--in( Ia,-anl)]} (7.6b) 

where Cin(a) = de . ( 7 . 6 ~ )  

It now remains for us to evaluate the expressions (3.6,4.5,5.7) for the dosage, centroid 
and variance. 
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0.1 0.2 0.3 0.4 
Downstream distance X/Ut,  

FIQURE 2a, b. Exact (-) and approximate ( - - - - )  dosage as functions of downstream position at 
(a) the shallow bank, (b)  the deep-water bank, for point discharges at various cross-stream locations 
yo. t, is a characteristic transverse mixing time defined in equation (7.4e). 

Figure 2 (a)  shows the dosage experienced at the shallow bank y = 0 for point 
discharges of unit vertically integrated strength 

ha = S(Y-Yo), (7.7) 

at a number of cross-stream positions yo. Figure 2 (b )  gives the corresponding dosages 
experienced at the deepwater bank y = B. We observe that for discharges close to 
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Downstream distance x/ut, 
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0.3 
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0 0.1 0.2 0.3 0.4 
Downstream distance x/lit,  

FIGURE 3a,  b. Exact (-) and approximate ( - - - - )  temporal centroid at (a)  the shallow bank, 
( b )  the deep-water bank. 

one of the banks the dosage a t  the nearby bank increases rapidly downstream and 
then decreases to  the common asymptotic value. Similar features are apparent in 
figure 3 of Tsai & Holley (1978). The discharge position y o / B  = 0.6 is exceptional in 
so far as a t  both banks the dosage monotonically increases towards the asymptotic 
value. This is very close to the optimal discharge site in the sense discussed by Smith 
(1982 b). 

Figures 3(a  and b) give the results for the temporal centroid T. I n  accord with 
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Downstream distance x p ,  
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\ 
2 
b v 

B .a 
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0.005 -- 

I " " I " "  
0 0.1 0.2 0.3 0.4 

Downstream distance x/w, 

229 

FIGURE 4a, b. Exact (-) and approximate ( - - - - )  temporal variance at (a) the shallow bank, 
( b )  the deep-water bank. 

physical intuition, there is a later arrival if either the observations or the discharge 
are made in a slow-moving part of the flow. A more subtle feature is that the slope 
can exhibit slight non-monotonicity (e.g. the yo /B  = 0,0.2 curves in figure 3a) .  When 
the source and observation position are both in the slower-moving water, the effective 
velocity for the contaminant is initially low. However, at moderate distances 
downstream the material can have diffused out into the faster-moving part of the 
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flow, travelled along relatively quickly, and then diffused back to the bank. It is this 
speeding-up which makes the slopes in figure 3 (a) decrease slightly below 1.  

Figures 4(a and b) give the results for the temporal variance c2. I n  keeping with 
the work of Smith (1981), the variance is largest when the discharge is located at the 
shallow bank. Also, the magnitude of the difference in variance means that the 
concentration is influenced strongly by the source location. At the shallow bank the 
approach to the asymptote is relatively slow. Thus figure 4(a) extends to  twice the 
downstream distance of all the other figures. This slower response is a consequence 
of the low value of K~~ which delays outwards or inwards diffusion of material. 

8. Test of the two-mode approximation 

5 . 9 ~ )  for the auxiliary functions G, G@) take the forms 
When we integrate-out the z-structure the transverse diffusion equations (4.7 a, 

with 

(8.la) 

(8.lb) 

(8.lc) 

and Jvy h 11 u 11 Gdy = Jvy h 11 u 11 G(2)dy = 0. (8.1 d) 

For the triangular topography (7.3) with the model (7.2a, b) for the velocity and 
diffusivity distributions, it can be verified that 

( 8 . 2 ~ )  

The seven integrals required in the two-mode analysis of $6 have the values 
- 

- 2  uc2 1 2 =-p,  p=- 
11025tf' 

G = - t  - 
525 "' U 4410 

42 1 - - 797 ( U - u )  G G ( 2 )  -- 
38201 625 "' - - ,cTc" 

76403250 "' U 
- 
U 

133 237 t;, p = 445 639 ucoz -- - 
U 834323490000 106 964 550 000 

Substituting these results into the quadratic equations (6.7) we obtain the two roots 

t t 
p1 = 16.688 ", p2 = 44.20 ". (8.4) 

U U 

The exact analysis (7.4a, 7.5) yields the exact eigenvalues 

t t 
pl = 16.609 4, p2 = 41.36 ". 

U U 
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FIQURE 5. Exact (-) and approximate (- - - -) modal shapes for a shallow triangular channel. 
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a" 
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1 .o 

I " " I " '  T- 0.8 

0.0 0.1 0.2 0.3 0.4 

x/llt, 

FIQURE 6. Exact (-) and approximate ( - - - - )  dosage experienced at various positions y acrom 
the flow downstream of a uniform discharge. 

Thus, there is better than one per cent accuracy for the leading eigenvalue pl, but 
a considerably less accurate estimate for the second eigenvalue p2. Figure ( 5 )  gives 
the corresponding comparisons of the exact and approximate modes. As is usual for 
eigenvalue problems, the eigenfunctions are less accurate than the eigenvalues. 

The largest errors in the mode shapes are at  the boundaries. Thus, the most 
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0.7 --I-- + 
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i= I O . ‘ i  0.2 
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0.0 0.1 0.2 0.3 0.4 

Downstream distance x / w ,  

FIQURE 7. Exact (-) and approximate ( - - - - )  temporal centroid downstream of 
discharge. 

a 

5 0.010 

8 

- 
\ 
b 
Y 

.i 
> 

i 

uniform 

0 0.1 0.2 0.3 0.4 
Downstream distance x/urc 

FIQURE 8. Exact (-) and approximate (- - - -) temporal variance downstream of a uniform 
discharge. 

stringent. test of the two-mode approximation is to consider the concentration 
experienced at  the boundaries. These are precisely the conditions investigated in 
figures (2-4). The dashed curves show that close to the discharge the approximations 
are unreliable. However, most of the approach to the asymptotic form is well- 
reproduced, and the asymptotes are exact. 
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The most widely studied discharge condition is one which is uniform across the flow. 
Figures (6.8) show the dosage, centroid and temporal variance in this case at  several 
locations y / B  across the flow. This is the mode of presentation used by Tsai & Holley 
(1978, figure 2). By contrast with the worst case results (figures 2-4) exhibited above, 
the accuracy of the two-mode approximation is quite impressive even at small 
distances from the discharge. 

9. Concluding remarks 
The work of Tsai & Holley (1978), Chatwin (1980), and that presented here, 

demonstrate how temporal moments can be used in numerical predictions, in the 
analysis of field data, and to obtain exact analytic results. On all accounts the 
temporal approach is of similar complexity, and hence is a genuine alternative to the 
longer-established spatial approach to contaminant dispersion. 

One facet of the exact analysis is that it can provide canonical examples for the 
testing of numerical methods. More substantially, the exact form of solutions can give 
valuable insight for the qualitative understanding of the dispersion process, and 
towards the development of efficient approximation schemes. For example in 5 6 
above it is shown that from the velocity profile u(y,z) and two readily calculable 
auxiliary functions G(y, z) ,  G(z)(y, z) it is possible to construct a two-mode approxi- 
mation. By design, the asymptotic form at large x is exact and the approach to  the 
asymptote is reasonably accurate. 
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